مدیریت پیچیدگی
اعمال شیوه‌های مدیریتی با محوریت اشیاء در مطالعه، طراحی، ایجاد، و اجراء پروژه‌های مهندسی نرم‌افزار و مهندسی دانش.





برنامه‌نویسی غیر ساخت‌یافته
برنامه نویسی غیر ساخت یافته قدیمی ترین پارادایم برنامه‌نویسی است که قادر به نوشتن الگوریتم برنامه ی تورینگ کامل است. این برنامه نویسی بعداً با برنامه نویسی تابعی وسپس برنامه نویسی شی گرا ادامه یافت و هر دو این برنامه ها به عنوان برنامه نویسی ساخت یافته در نظر گرفته شدند. برنامه نویسی ساخت یافته به خاطر تولید کدهایی که به سختی قابل خواندن بودند(اسپاگتی کد) به شدت مورد نکوهش قرار گرفت و گاهی اوقاتیک روش بد برای نوشتن پروژه های بزرگ در نظر گرفته شد.اما این نوع برنامه نویسی برای آزادی که به برنامه نویسان می دهد تحسین شده است و با این مقایسه شده است که موزارت چگونه موسیقی را نوشته است. هر دو زبانهای برنامه نویسی سطح بالا و سطح پایین وجود دارند که به عنوان زبانهای برنامه نویسی غیر ساخت یافته استفاده می شوند.




ویژگی ها ومفاهیم معمولی

مفاهیم اساسی
یک برنامه در یک زبان غیر ساخت یافته معمولاً شامل دستورهای متوالی منظم است یا جمله ها معمولاً هر کدام در یک خط نوشته شده اند.خط ها معمولاً شماره گذاری شده اند یا ممکن است که بر چسب داشته باشند.این خاصیت اجازه می دهد که جریان اجرایی برنامه بتواند به هر خط برنامه بپرد. برنامه نویسی غیرساخت یافته مفهوم جریان کنترل اساسی را همانند حلقه ها ، انشعابات و پرش ها معرفی میکند. هرچند که هیچ مفهوم رویه ای در الگوی غیرساخت یافته وجود ندارد،اجازه ی استفاده از زیرروالها را داریم.برعکس یک رویه، یک زیرروال ممکن است چندین نقطه ی ورود و خروج داشته باشد و یک پرش مستقیم به زیرروال یا خارج از زیر روال(از نظر فرض علمی) اجازه داده می شود.این انعطاف باعث میشود مفهومی که coroutine (دستور العمل اتصال مجموعه ای از ورودی ها به مجموعه ای از خروجی ها) نام داد در اینجا معنی پیدا کند. هیچ مفهومی در مورد متغییرهای محلی در زبان های برنامه نویسی غیر ساخت یافته (هر چند برای برنامه های اسمبلی رجیسترهای همه منظوره ممکن است همین منظور را پس از ذخیره کردن در ورودی برآورده کنند)، اما برچسب ها و متغییرها میتوانند اثر خود را در قسمت محدودی از برنامه بگذارند (برای مثال،تعدادی خط).این معنی را میتوان دیافت که هیچ تغییر متنی هنگام صدا زدن یک زیرروال رخ نمی‌دهد.پس همه متغییرها ممکن است که مقدار قبلی خود را از فراخوانی قبلی نگه دارند که باعث سخت شدن روش بازگشتی می شود.اما در بعضی نمونه های بازگشتی (که هیچ حالت زیر روالی پس از فراخوانی توابع بازگشتی احتیاج نمی‌شود) ممکن است.اگر متغییرها به زیر روال بازگشتی اختصاص داده شوند در ورودی زیر روال صریحاً پاک می شوند (یا دوباره با مقدار اصلی خود مقدار دهی می شوند) . عمق تو در تو بودن ممکن است محدود به یک یا دو بار باشد.




نوع و گونه ی داده
زبانهای غیر ساخت یافته اجازه استفاده از نوع های داده ای اساسی را مثل شماره ها، رشته ها و آرایه ها (تعدادی داده ی همنوع) می دهند. معرفی آرایه ها در زبان های غیر ساخت یافته یک مرحله ی رو به جلو قابل توجه است.فرایند ساخت جریان داده با وجود فقدان نوع داده ای ساختار ممکن است.





برنامه‌نویسی مفهوم
برنامه نویسی مفهوم یک پارادایم برنامه نویسی است، که برچگونگی ترجمهٔ مفاهیمی که در ذهن برنامه نویس شکل می‌گیرد به آنچه در فضای کد قابل دستیابی است، تمرکز می‌کند. این رویکرد توسط کریستوف دی نچین در سال ۲۰۰۱ با زبان برنامه نویسی XL معرفی شد.




شبه سنجه‌ها

برنامه نویسی مفهوم شبه سنجه‌ها را برای ارزیابی کیفیت کد به کار می‌گیرد. بدین دلیل به اینها شبه سنجه گفته می‌شود که فضای مفهوم و فضای کد را به هم مربوط می‌سازند. با درک روشنی از اینکه فضای مفهوم را نمی‌توان به اندازهٔ کافی محدود به قالب بندی‌هایی کرد تا بتوان سنجه‌های واقعی را تعریف نمود. شبه سنجه‌های برنامه نویسی مفهومی در برگیرندهٔ موارد زیر می‌شوند:

اعوجاج نحوی تفاوت میان مفهوم و نحوی که برای نمایش آن به کار گرفته شده است را اندازه‌گیری می‌کند. به عنوان مثال: نقطه ویرگول در انتهای دستورات در زبان C می‌تواند به عنوان اعوجاج نحوی در نظر گرفته شود چون در فضای مفهوم معادلی ندارد.
اعوجاج معنایی فاصلهٔ معنا یا رفتار مورد انتظار از مفهوم با معنا با رفتار واقعی درون کد را اندازه‌گیری می‌کند. به عنوان مثال: این حقیقت که انواع دادهٔ حسابی سرریز می‌کنند (در حالیکه اعداد حسابی ریاضی چنین نیستند.) صورتی از اعوجاج معنایی است.
پهنای باند این را اندازه‌گیری می‌کند که به چه میزان از فضای مفهوم را یک ساختار کد از پیش تعیین شده می‌تواند معرفی نماید. به عنوان مثال: عملگر جمع اضافه بار شده در زبان C پهنای باند بیشتری از دستور جمع در زبان اسمبلی (Add) دارد چون عملگر زبان C می‌تواند عمل جمع را با اعداد ممیز شناور (و نه فقط اعداد حسابی انجام دهد.)
نسبت سیگنال به اعوجاج این را اندازه‌گیری می‍کند که چه کسری از فضای کد در برابر اطلاعات پیاده‌سازی شده برای نمایش مفاهیم واقعی به کار گرفته شده است.





قانون برابری، شکست برابری

قانون برابری هنگامی تایید می‌شود که رفتار کد با مفهوم اصلی همخوانی داشته باشد. این برابری ممکن است در حالت‌های بسیاری به شکست بینجامد. سرریز کردن اعداد حسابی برابری میان مفهوم ریاضی اعداد حسابی و تقریب کامپیوتری شده از این مفهوم را برهم می‌زند. به راه‌های بسیاری در شکست برابری اسامی ویژه‌ای داده شده است زیرا این موارد خیلی رایج هستند:

خطای دامنه وضعیتی است که در آن کد خارج از دامنهٔ برابری اجرا می‌شود، که این دامنه ایست که در آن مفهوم و پیاده‌سازی منطبق می‌شوند سرریز عدد حسابی مثالی از خطای دامنه است.
قالب مفهوم (همچنین قالب بندی دوباره مفهوم یا مفهوم را دوباره قالب بندی کردن) بازنویسی یک مفهوم به صورت مفهومی دیگر است بدین سبب که مفهوم اصلی را نمی‌توان به وسیله ابزارها پیاده‌سازی نمود در زبان C به کار بردن اشاره گرها برای آرگومان‌های خروجی به این دلیل که زبان C از آرگومان‌های خروجی به صورت صریح پشتیبانی نمی‌کند، مثالی از قالب مفهوم است.
وارونگی اولویت صورتی از اعوجاج نحوی یا معنایی است که به وسیله برخی قوانین عمومی دیکته شده از سوی زبان به وجود می‌آید. از این رو وارونگی اولویت نامیده می‌شود که زبان تقدم را بر مفهوم حاکم می‌سازد. در Smalltalk هر چیزی یک شی است و این قانون به این دستاورد ناخواسته منجر می‌شود که عبارتی شبیه به ۲+۳*۵ از توالی مرسوم عملیات پیروی نمی‌کند (در Smalltalk ابتدا ۲ با ۳ جمع شده، حاصل آن در ۵ ضرب می‌شود که در نهایت عدد ۲۵ به جای ۱۷ بدست می‌آید.)




روش شناسی

برای نوشتن کد برنامه نویسی مفهوم این گام‌ها را پیشنهاد می‌دهد:

مفاهیم مرتبط را در فضای مفهوم شناسایی و تعریف نمایید.
نمادهای سنتی برای مفاهیم را شناسایی یا نمادهای قابل استفاده جدیدی ایجاد نمایید.
ترکیبی از ساختارهای برنامه نویسی را شناسایی کنید که اجازه می‌دهد مفاهیم به راحتی به قالب کد درآیند، که یافتن نماد کدی که با نماد شناسایی شده در مرحله قبل تا حد ممکن نزدیک باشد، را در بر می‌گیرد.
کدی بنویسید که تا حد ممکن رفتار و معانی مورد انتظار از جنبه‌های مرتبط مفهوم اصلی را حفظ و نگهداری می‌کند.

ابزارهای برنامه نویسی بسیاری اغلب فاقد قابلیت‌های نمادی هستند. بنابراین برنامه نویسی مفهوم در برخی موارد نیازمند استفاده از پیش پردازنده‌ها، زبان‌های مختص به دامنه یا روش‌های فرا برنامه نویسی است.




زبان‌ها

زبان برنامه نویسی XL تنها زبان شناخته شده ایست که تا به امروز به طور واضح برای برنامه نویسی مفهوم ایجاد شده است. اما برنامه نویسی مفهوم تقریباً در هر زبانی با درجات متفاوتی از موفقیت قابل اجراست. زبان‌های برنامه نویسی Lisp و Forth و مشتقات آنها نمونه‎هایی از زبان‌های از قبل موجود هستند که به خوبی قابلیت استفاده به عنوان برنامه نویسی مفهوم را دارند.




کارهای مشابه

پروژه‌هایی هستند که از ایده‌های مشابه بهره‌برداری کرده‌اند تا با سطح بالایی از انتزاع کد تولید کنند. دربین آنها این موارد را می‌توان نام برد:

برنامه نویسی هدفی
برنامه نویسی زبان گرا
برنامه نویسی ادیبانه
معماری مدل- محور






برنامه‌نویسی منطقی
برنامه‌نویسی منطقی در کلی‌ترین مفهوم آن، کاربرد منطق ریاضی در برنامه‌نویسی رایانه است.




پارادایم برنامه‌نویسی
پارادایم برنامه‌نویسی یا شیوه‌های برنامه‌نویسی، به شیوه‌های اساسی برنامه‌نویسی رایانه گویند.
مرور کلی
یک زبان‌ برنامه‌نویسی می‌تواند یک یا چند شیوه برنامه‌نویسی را پشتیبانی نماید. برای مثال، برنامه‌های نوشته شده با سی++ میتوانند کاملاً بصورت رویه‌ای باشند یا کاملاً منطبق بر شیوه برنامه‌نویسی شئ‌گرا که در تضاد کامل با شیوه رویه‌ای است بوده یا حتی حاوی عناصری از هر دو شیوه باشند. تصمیم‌گیری برای چگونگی استفاده از عناصر شیوه‌های برنامه‌نویسی برعهده طراح برنامه یا برنامه‌نویس می‌باشد.



نمونه‌های مهم

برنامه‌نویسی دستوری در تضاد با برنامه‌نویسی تابعی
برنامه‌نویسی رویه‌ای در تضاد با برنامه‌نویسی شئ‌گرا
برنامه‌نویسی منطقی







مدل برنامه‌نویسی موازی

مدل برنامه‌نویسی موازی (به انگلیسی: Parallel programming model) مفهومی است که عبارت‌های برنامه‌های موازی را قادر می‌سازد ترجمه و اجرا شوند. ارزش یک مدل برنامه‌نویسی معمولاً بر اساس فراگیری آن (اینکه چند مسئلۀ متفاوت می‌توانند توسط آن بیان شوند و با چند معماری مختلف می‌توان آن‌ها را اجرا کرد) تعیین می‌شود. ایجاد یک مدل برنامه‌نویسی می‌تواند چندین حالت بگیرد مانند الهام گرفتن کتابخانه‌ها از زبان‌های متوالی قدیمی، ضمیمه‌های زبان و یا مدل‌های اجرایی کاملاً جدید.

اجماع بر روی یک مدل برنامه‌نویسی مهم است چرا که نرم‌افزار را قادر می‌سازد تا در آن بیان شده و در معماری‌های متفاوت ترابرپذیر باشند. از معماری فون نویمان با معماری‌های متوالی‌اش در این مدل کمک گرفته شده است تا پلی کارآمد را بین نرم‌افزار و سخت‌افزار فراهم کند؛ بدین معنی که زبان‌های برنامه‌نویسی سطح بالا می‌توانند در آن به صورت کارآمد ترجمه شده و توسط سخت‌افزار اجرا گردند.




طبقه‌بندی و الگوهای اصلی

طبقه‌بندی‌های مدل‌های برنامه‌نویسی موازی را می‌توان به دو محدودۀ کلی تقسیم کرد: تعامل فرایند و تجزیۀ مسئله.




تعامل فرایند

تعامل فرایند مربوط به مکانیزمی می‌یاشد که فرایندهای موازی در آن می‌توانند با یکدیگر در ارتباط باشند. معمول‌ترین حالت‌های تعامل، حافظۀ مشترک و گذر پیام هستند، اما موازی‌سازی مطلق نیز وجود دارد.




حافظۀ مشترک
در مدل حافظۀ مشترک، وظایف موازی یک فضای آدرس جهانی را به اشتراک می‌گذارند و به صورت غیرهمزمان آن را خوانده و می‌نویسند. این مدل به مکانیزم‌های محافظتی چون قفل‌ها، نشان‌برها و مبصرانی احتیاج دارد تا دسترسی همزمان را کنترل کند. حافظۀ مشترک می‌تواند در سیستم‌های با حافظۀ توزیع‌شده و حافظه دسترسی غیریکپارچه (نوما) شبیه‌سازی گردند.

در مدل انتقال پیام، وظایف موازی داده‌ها را به کمک گذر پیام با یکدیگر عوض می‌کنند. این ارتباطات می‌توانند همزمان یا غیرهمزمان باشند. رسمی‌سازی انتقال پیام فرایند ارتباطات متوالی (سی‌اس‌پی) کانال‌های ارتباطی را به خدمت گرفته است تا فرایندها را به یکدیگر "مرتبط" سازد؛ و با این کار باعث ایجاد شدن چندین زبان مهم همچون جویس، اوکام و ارلنگ شد.




موازی‌سازی تلویحی

در مدل موازی‌سازی مطلق، هیچ یک از فعل و انفعالات فرایند برای برنامه‌نویس قابل مشاهده نیست و به جای آن مترجم و یا ران‌تایم برای اجرای آن مسئول است. این مدل بین زبان‌های با دامنۀ اختصاصی متداول‌تر می‌باشد.




تجزیۀ مسئله

هر برنامۀ موازی از فرایندهای در حال اجرا به صورت همزمان تشکیل شده است، تجزیۀ مسئله به راهی مربوط است که در آن این فرایندها فرموله شده‌اند. این طبقه‌بندی ممکن است به اسکلت‌های الگوریتمی یا موازی‌سازی‌های برنامه‌نویسی موازی اشاره کند.




موازی‌سازی وظیفه

یک مدل موازی‌سازی وظیفه بر روی فرایند یا ریسه‌های اجرا تمرکز دارد. این فرایندها معمولاً از لحاظ رفتاری مجزا خواهند بود، که بر نیاز به ارتباطات تاکید میکند. موازی‌سازی وظیفه یک راه طبیعی برای توصیف ارتباطات گذر پیام می‌باشد. این مدل معمولاً به ام‌آی‌ام‌دی/ام‌پی‌ام‌دی و ام‌آی‌اس‌دی تقسیم می‌شود.




موازی‌سازی داده
یک مدل موازی‌سازی داده بر روی عملیات‌های روی داده که معمولاً به صورت ساختاری آرایه هستند، تمرکز دارد. مجموعه‌ای از وظایف بر روی این داده‌ها عملیات‌هایی را انجام می‌دهند اما به صورت مستقل و در بخشی جدا. در یک سیستم با حافظۀ مشترک، داده برای همگی قابل دسترس خواهد بود، اما در سیستم حافظۀ حافظۀ توزیع شده بین حافظه‌ها تقسیم شده و به طور محلی بر رویشان کار خواهد شد. مدل موازی‌سازی داده معمولاً به اس‌آی‌ام‌دی/اس‌پی‌ام‌دی تقسیم می‌شود.






مهندسی نرم‌افزار

مهندسی نرم افزار (به انگلیسی: Software engineering) یعنی استفاده از اصول مهندسی بجا و مناسب برای تولید و ارائه محصول نرم افزاری با کیفیت که قابل اطمینان و با صرفه بوده و برروی ماشین های واقعی به طور کارآمدی عمل کند.

مهندسی نرم افزار یک روش سیستماتیک، منظم و دقیق برای ساخت و ارائه محصولی نرم افزاری با کیفیت است.

مهندسی نرم‌افزار اغلب شامل فرآیند خطی تحلیل، طراحی، پیاده سازی و آزمون است؛ که با به کارگیری روش‌های فنی و علمی از علوم مهندسی موجب تولید نرم افزاری با کیفیت مطلوب در طول یک فرآیند انتخابی مناسب پروژه می شود.

کاربردهای مهندسی نرم‌افزار دارای ارزش‌های اجتماعی و اقتصادی هستند، زیرا بهره‌وری مردم را بالا برده، چند و چون زندگی آنان را بهتر می‌کنند. مردم با بهره‌گیری از نرم‌افزار، توانایی انجام کارهایی را دارند که قبل از آن برای‌شان شدنی نبود. نمونه‌هایی از این دست نرم‌افزارها عبارت‌اند از: سامانه‌های توکار، نرم‌افزار اداری، بازی‌های رایانه‌ای و اینترنت.

فناوری‌ها و خدمات مهندسی نرم‌افزار به کاربران برای بهبود بهره‌وری و کیفیت یاری میرساند. نمونه‌هایی از زمینه‌های بهبود: پایگاه داده‌ها، زبان‌ها، کتابخانه‌ها، الگوها، فرآیندها و ابزار.




مهم ترین شاخص مهندسی نرم‌افزار

مهم ترین شاخص در مهندسی نرم افزار تولید نرم افزار با کیفیت مناسب در جهت «نیازهای مشتری» است.




پیشینه مهندسی نرم‌افزار

اصطلاح مهندسی نرم‌افزار پس از سال ۱۹۶۸ میلادی شناخته شد. این اصطلاح طی نشست «مهندسی نرم‌افزار ناتو ۱۹۶۸» (که در گارمیش-پارتنکیرشن، آلمان برگزار شد) توسط ریاست نشست فریدریش ال باوئر معرفی شد و از آن پس به‌طور گسترده مورد استفاده قرار گرفت.

اصطلاح مهندسی‌نرم‌افزار عموماً به معانی مختلفی به‌کار می‌رود:

به‌عنوان یک اصطلاح غیر رسمی امروزی برای محدوده وسیع فعالیت‌هایی که پیش از این برنامه‌نویسی و تحلیل سامانه‌ها نامیده می‌شد.
به‌عنوان یک اصطلاح جامع برای تمامی جنبه‌های عملی برنامه‌نویسی رایانه، در مقابل تئوری برنامه‌نویسی رایانه، که علوم رایانه نامیده می‌شود.
به‌عنوان اصطلاح مجسم‌کننده طرفداری از یک رویکرد خاص نسبت به برنامه‌نویسی رایانه که اصرار می‌کند، مهندسی نرم‌افزار، به‌جای آنکه هنر یا مهارت باشد، باید به‌عنوان یک رشته عملی مهندسی تلقی شود و از جمع‌کردن و تدوین روش‌های عملی توصیه‌شده به شکل متدولوژی‌های مهندسی نرم‌افزار طرفداری می‌کند.
مهندسی نرم‌افزار عبارتست از:

کاربرد یک رویکرد سامانه‌شناسی، انتظام‌یافته، قابل سنجش نسبت به توسعه، عملکرد و نگهداری نرم‌افزار، که کاربرد مهندسی در نرم‌افزار است.



مطالعه روش‌های موجود در استاندارد IEEE

محدوده مهندسی نرم‌افزار و تمرکز آن

مهندسی نرم‌افزار به مفهوم توسعه و بازبینی یک سامانه نرم‌افزاری مربوط می‌باشد. این رشته علمی با شناسایی، تعریف، فهمیدن و بازبینی خصوصیات مورد نیاز نرم‌افزار حاصل سر و کار دارد. این خصوصیات نرم‌افزاری ممکن است شامل پاسخگویی به نیازها، اطمینان‌پذیری، قابلیت نگهداری، در دسترس بودن، آزمون‌پذیری، استفاده آسان، قابلیت حمل و سایر خصوصیات باشد.

مهندسی نرم‌افزار ضمن اشاره به خصوصیات فوق، مشخصات معین طراحی و فنی را آماده می‌کند که اگر به‌درستی پیاده‌سازی شود، نرم‌افزاری را تولید خواهد کرد که می‌تواند بررسی شود که آیا این نیازمندی‌ها را تأمین می‌کند یا خیر.

مهندسی نرم‌افزار همچنین با خصوصیات پروسه توسعه نرم‌افزاری در ارتباط است. در این رابطه، با خصوصیاتی مانند هزینه توسعه نرم‌افزار، طول مدت توسعه نرم‌افزار و ریسک‌های توسعه نرم‌افزار درگیر است.




نیاز به مهندسی نرم‌افزار

نرم‌افزار عموماً از محصولات و موقعیت‌هایی شناخته می‌شود که قابلیت اطمینان زیادی از آن انتظار می‌رود، حتی در شرایط طاقت فرسا، مانند نظارت و کنترل نیروگاه‌های انرژی هسته‌ای، یا هدایت یک هواپیمای مسافربری در هوا، چنین برنامه‌هایی شامل هزاران خط کد هستند، که از نظر پیچیدگی با پیچیده‌ترین ماشین‌های نوین قابل مقایسه هستند. به‌عنوان مثال، یک هواپیمای مسافربری چند میلیون قطعه فیزیکی دارد (و یک شاتل فضایی حدود ده میلیون بخش دارد)، در حالی که نرم‌افزارِ هدایت چنین هواپیمایی می‌تواند تا ۴ میلیون خط کد داشته باشد.

با توجه به گسترش روزافزون دنیای رایانه امروزه بیش از هر زمان دیگری نیاز به متخصصان رایانه احساس می شود. متاسفانه این رشته در ایران بازار کار خوبی ندارد طبق آمارها ۶۳٫۲۷ درصد از فارغ‌التحصیلان در سال ۹۰ مشغول به کار در سایر مشاغل هستند. اما برای مهندسان سخت افزار هم امكان كار در شركت‌های تولیدكننده قطعات و دستگاه‌ها و مراكز صنعتی – تولیدی بسیار فراهم است و از نظر سطح درآمدی هم با توجه به دانش و پشتكار شخصی در حد متوسط قرار دارند. به طور کلی این رشته در ایران با استقبال چندانی رو به رو نیست؛ این نیز حاکی از نبود برخی از زیرساخت‌ها در ایران هست.




تکنولوژی‌ها و روش‌های عملی

مهندسان نرم‌افزار طرفدار تکنولوژی‌ها و روشهای عملی بسیار متفاوت و مختلفی هستند، که با هم ناسازگار هستند. این بحث در سال‌های دهه ۶۰ میلادی شروع شد و ممکن است برای همیشه ادامه پیدا کند. مهندسان نرم‌افزار از تکنولوژی‌ها و روش‌های عملی بسیار متنوعی استفاده می‌کنند. کسانی که کار عملی می‌کنند از تکنولوژی‌های متنوعی استفاده می‌کنند: کامپایلرها، منابع کد، پردازشگرهای متن. کسانی که کار عملی می‌کنند از روش‌های عملی بسیار متنوعی استفاده می‌کنند تا تلاش‌هایشان را اجرا و هماهنگ کنند: برنامه‌نویسی در دسته‌های دونفری، بازبینی کد، و جلسات روزانه. هدف هر مهندس نرم‌افزار بایستی رسیدن به ایده‌های جدید خارج از الگوهای طراحی شده قبلی باشد، که باید شفاف بوده و به‌خوبی مستند شده باشد.

با وجود رشد فزاینده اقتصادی و قابلیت تولید فزاینده‌ای که توسط نرم‌افزار ایجاد شده، هنوز هم بحث و جدل‌های ماندگار درباره کیفیت نرم‌افزار ادامه دارند.




ماهیت مهندسی نرم‌افزار

دیوید پارناس گفته‌است که مهندسی نرم‌افزار یک شکل از مهندسی است. استیو مک‌کانل گفته‌است که هنوز اینطور نیست، ولی مهندسی نرم‌افزار باید یک شکل از مهندسی شود. دونالد کنوت گفته‌است که برنامه‌نویسی یک هنر است.

دیوان فعالیت‌های آماری آمریکا مهندسان نرم‌افزار را به عنوان زیرگروهی از «متخصصان رایانه»، با فرصت‌های شغلی‌ای مانند «دانشمند رایانه»، «برنامه نویس» و «مدیر شبکه» دسته بندی کرده‌است. BLS تمام مهندسان دیگر این شاخه علمی، که شامل مهندسان سخت‌افزار رایانه نیز هست، را به‌عنوان «مهندسان» دسته بندی می‌کند.






مهندسی دانش
مهندسی دانش به مجموعه فرایندهای مربوط به طراحی، مهندسی و ایجاد سامانه‌های مبتنی بر دانش اطلاق می‌شود. مهندسی دانش دارای وجوه مشترک فراوانی با مهندسی نرم‌افزار است، به‌طوری که بیشتر راه حل‌ها و روشهای هریک را می‌توان در دیگری استفاده کرد. علاوه بر آن، زمینه‌های دیگری مثل هوش مصنوعی، پایگاه‌های داده‌ها، کاوش‌های ماشینی در داده‌ها، سامانه‌های خبره، سامانه‌های پشتیبانی تصمیم‌ها و نیز سامانه‌های اطلاعات جغرافیایی را باید در ارتباط نزدیک با مهندسی دانش به حساب آورد. این رشته بسبار مناسب بانک است




مهندس دانش کیست؟

مهندسان دانش (Knowledge Engineer) نقشی است که در فرآیند مهندسی دانش یا (Knowledge Engineering) تبحر دارد؛ وی می تواند سه فعالیت استخراج، تحلیل و مدلسازی دانش را انجام دهد. این سه فعالیت منجر به تولید یک پایگاه دانش ساخت یافته مبتنی بر مدل های دانش با قابلیت استفاده مجدد می شود که می تواند به عنوان محتوای ورودی در یک سیستم مبتنی بر دانش استفاده شود. در نگاه های غیرحرفه ای تر مهندس دانش به عنوان نقشی برای اجرای برخی فرآیندهای ساده مدیریت دانش تنزل پیدا می کند.





سیستم‌های مدیریت دانش

مدیریت دانش رویکردی یکپارچه به شناسایی، کسب و استخراج، بازیابی، ارزیابی، تسهیم و خلق کلیه منابع دانش سازمان است به گونه‌ای که سازمان را در جهت دستیابی به اهداف سازمانی کمک نماید. هدف مدیریت دانش برقراری ارتباط بین خبرگان و افراد مجرب سازمان با افرادی است که نیاز به دانش خاصی را دارند. ایجاد چنین ارتباطی به کمک فرایندها و ابزارهای مدیریت دانش تسهیل می‌گردد. موفقیت در زمینۀ مدیریت دانش نیازمند ایجاد یک محیط جدید کاری می‌باشد، که دانش و تجربه بتوانند به راحتی تسهیم شوند.

دوران کنونی، دوران دگرگونی و تغیر پرشناب دانش است. هر پنج و نیم سال حجم دانش دو برابر می‌شود، البته عمر میانگین آن که به «دارایی» و «منبع ارزشمند راهبردی» ارتباط دارد، کمتر از چهار سال است. «مدیریت دانش» یکی از گفتمانهایی است که در دوران جدید در زمینه مدیریت مطرح گردیده و به شدت مورد توجه سازمان‌ها و مبحث مدیریت قرار گرفته‌است. از مهم ترین ارکان مدیریت دانش، پیاده سازی سیستم و اثربخشی آن در سطح سازمان می‌باشد. چرا که دیگر مطالب مرتبط با آن همگی به عنوان مقدمه‌ای جهت بسترسازی و استفاده از آن‌ها برای تحقق عملی مدیریت دانش به شمار می‌روند. سازمان‌های پیشرو زیادی در جهان به اهمیت مدیریت دانش به عنوان رویکردی نوین در مدیریت کسب و کار پی برده و اقدام به پیاده سازی آن نموده‌اند




تعریف مدیریت دانش

مدیریت دانش رویکردی یکپارچه به شناسایی، کسب و استخراج، بازیابی، ارزیابی، تسهیم و خلق کلیه منابع دانش سازمان است به گونه‌ای که سازمان را در جهت دستیابی به اهداف سازمانی کمک نماید. هدف مدیریت دانش برقراری ارتباط بین خبرگان و افراد مجرب سازمان با افرادی است که نیاز به دانش خاصی را دارند. ایجاد چنین ارتباطی به کمک فرایندها و ابزارهای مدیریت دانش تسهیل می‌گردد. موفقیت در زمینۀ مدیریت دانش نیازمند ایجاد یک محیط جدید کاری می‌باشد، که دانش و تجربه بتوانند به راحتی تسهیم شوند.




آفرینش و ربایش دانش

سازمان باید به خوبی بتواند دانش مورد نیاز خود را شناسایی کند، در صورت نیازآن را بیافریند، یا اینکه از منابع دانش خارج از سازمان بدست آورد.




ذخیره سازی

دانش خلق شده یا کسب شده، باید با نیازهای شما تطبیق داده شده و به تعبیری، آماده شود و به صورت مناسب ذخیره شود تا در زمان و مکان و شرایط مورد نیاز مورد استفاده قرارگیرد.




انتشار و به اشتراک گذاری

نکته قابل توجه آن است که باید از راکد ماندن دانش جلوگیری کرد زیرا تنها جریان سیال دانش است که می‌تواند چون آب جاری ارزش خود را حفظ کند و زندگی بخش باشد تا هر که تشنه آن است از آن سیراب شود. با توزیع و انتشار و اشتراک گذاری دانش بصورتی روان و سیال در می‌آید و از راکد بودن آن جلوگیری می‌کند.



به کارگیری دانش

پس از انجام گامه های فوق مدیریت دانش در سطح سازمان پیاده سازی می‌شود و مورد استفاده قرار می‌گیرد.




انواع دانش

چهار نوع دانش مشخص شده‌است:

دانش نیروی انسانی: دانشی است که در توسط اعضای سازمان به وجود می¬آید.
دانش مکانیزه: دانشی که حامل وظایف ویژه یکپارچه در سخت افزارماشین است، در واقع شامل دانش مربوط به تجهیزات سازمان می‌باشد.
دانش مستند: دانشی که به شکل بایگانی، کتاب، سند، دفتر کل، دستورات، نمودارها و... ذخیره می‌شود.
دانش خودکار (اتوماتیک): دانشی است که به طور الکترونیکی ذخیره شده و به وسیله برنامه‌های رایانه‌ای که وظایف خاص را پشتیبانی می‌کند قابل دسترسی می‌باشد

از سوی دیگر دانش را به دو نوع نهفته یا ضمنی و آشکار تقسیم بندی می‌کنند: دانش نهفته معمولاً در قلمرو دانش شخصی، شناختی وتجربی قرار می¬گیرد. فرآوردۀ تجربیات افراد می-باشد و از همین رو در جایی ثبت نمی‌گردد بلکه با گفتگو، بحث، مشورت و ... به اشتراک گذاشته می‌شود. دانش آشکار بیشتر به دانشی گفته می شود که جنبه عینی تر -عقلانی تر و فنی تر دارد (داده‌ها، خط مشی‌ها، روش‌ها، نرم‌افزارها، اسناد و ...). دانش آشکار به طور معمول قابل ثبت می‌باشد و به صورت نوشته به آسانی در دسترسی افراد قرار می‌گیرد.




تبدیل دانش

۱. اجتماعی‌سازی از نهفته به نهفته افراد می‌توانند از طریق کنش‌های اجتماعی، در اشتراک گذاری دانش‌هایی که جنبه‌ی شخصی داشته و فرموله‌کردن آن دشوار است، سهیم شوند. برای مثال، به‌اشتراک‌گذاشتن تجربیات جنگی فرماندهان از طریق بازگویی خاطرات جنگی است. تبدیل دانش نهفته به نهفته با مشارکت در تجربه ها و تقلید و تمرین و یادگیری از طریق آموزش استاد-شاگردی، شرکت در همایش ها و سمینارها و نشست ها، یا به سادگی در هنگام برهمکنش میان کارکنان در زمان‌های استراحت حاصل می‌شود. سیستم‌هایی که در این حوزه به کار می‌روند عبارتند از:

گروه افزار



سامانه های مکان یابی

۲. برونی‌سازی از نهفته به آشکار برونی‌سازی یعنی تبدیل دانش شخصی افراد که کیفیت نهفته دارد، به دانش آشکاری که دسترس پذیر باشد و به افراد یا گروه‌های دیگر به سادگی انتقال یابد. که این امر از طریق بیان و اظهار دانش شخصی افراد و ثبت آن تحقق می‌یابد، مثل یک گزارش یا مستندسازی. که در این حوزه سیستم‌های گروه افزار و سیستمهای گردش کار مورد استفاده قرار می‌گیرید.

۳. تلفیق از آشکار به آشکار دانش آشکار می‌تواند از طریق فرایندهای گوناگون مستندسازی به شکل‌های گوناگون ارائه شود، این تبدیل با هدف اینکه مخاطبان بیش‌تری به آن دانش دسترسی داشته باشند، صورت می‌گیرد. به‌عنوان مثال، دانش صریح ریاضی یا فیزیک را که در قالب فرمول‌ها و نظریه‌ها شکل می‌گیرد، می‌توان طوری نوشت که برای گروه‌های سنی مختلف قابل استفاده باشد. سامانه های بکار رفته در این بخش عبارتند از:

سامانه های خودکارسازی اداری
سامانه های مدیریت مدارک الکترونیکی
سامانه های هوش تجاری
سامانه های دانش مدار
انبارهای داده
کتابخانه‌های مجازی
کارگزاران خودکار
نقشه‌های دانش، رده بندی ها و غیره
درگاههای دانش
فناوریهای کاوش

۴. درونی‌سازی از آشکار به نهفته تبدیل دانش آشکار به دانش نهفته می‌تواند دانش تازه‌ای در درون فرد ایجاد می‌کند. درونی سازی این امکان را به کارکنان می‌دهد تا دانش را در پاسخ و رفتار خود به گونه‌ای ادغام کنند که در هنگام رویارویی با موقعیت یا مشکلی که کاربرد دانش لازم است بتوانند دانش آشکار را به کار گیرند. برای مثال، یک سازمان حفاظت اطلاعات، بنا به نیاز، مجموعه‌ای از اصول و موازین مشخص را تدوین نموده، و رعایت آن‌ها را از تمامی کارکنان سازمان انتظار دارد. اما این اصول و موازین نمی‌توانند آن‌قدر گسترده و فراگیر باشند که بتوانند همه‌ی موقعیت‌های احتمالی ممکن را در برگیرند، و در هر شرایطی به فرمانده بگویند که فرمول حفاظت موقعیت چیست، و او چگونه باید تصمیم بگیرد. آن‌چه در عمل رخ می دهد این است که کارکنان (فرماندهان و زیردستان)، اصول آغازین و بنیادین حفاظتی را که به شکل دانش آشکار ارایه می‌شوند، درونی کنند، و به مرور زمان یاد می‌گیرند که چگونه در هر موقعیتی، واکنش حفاظتی درست را نشان دهند. این یعنی درونی‌سازی، که متضمن تبدیل دانش آشکار به نوعی دانش نهفته کاملاً شخصی است.

ابزارهای مورد استفاده در این قسمت عبارتند از:

ابزارهای پشتیبان نوآوری
نرم‌افزار یادگیری سازمانی

مراحل پیاده سازی نظام مدیریت دانش در سازمان

پیاده سازی یک نظام مدیریت دانش همچون سایر نظام ها و به تناسب موارد خاص آن در شش گامه صورت می‌گیرد:




گام نخست - امکان سنجی طرح

در این گامه وضعیت¬های موجود در سازمان جهت پیاده سازی طرح مورد بررسی قرار می‌گیرد. مطالعات روی جنبه¬های کلیدی مدیریت دانش نظیر انسان (فرهنگ)، سازمان (ساختار) و فن آورانۀ موجود انجام می¬گیرد. به این ترتیب، کاشتی ها و محدودیت‌های موجود در هریک از حوزه‌ها در ارتباط با پیاده سازی سیستم مشخص می‌شود.




مرحله دوم- طراحی خام نظام

پس از شناسایی محدودیت¬ها، راهکارهایی در قالب طرح خام نظام جهت رفع محدودیت¬ها ارائه می¬شود. در این مرحله با بررسی و واکاوی نظرات تصمیم¬گیران، اجرای قطعی سیستم در سازمان تعیین می‌گردد.




مرحله سوم- طراحی تفصیلی سیستم

پس از پذیرش طرح خام سیستم، طراحی تفصیلی سیستم صورت می¬گیرد. در این مرحله وارد جزئیات شده و متدولوژی قطعی نیز انتخاب می¬گردد. متدولوژی باید متناسب با نیازها و محدودیت‌های سازمان باشد. این نیازها و محدودیت‌ها در مرحله امکان سنجی مشخص شده و در مرحله خام مورد بررسی و راهکاردهی قرار گرفته‌است.




مرحله چهارم- پیاده سازی

در پیاده سازی سیستم مباحثی همچون فناوری، آموزش اولیه پرسنل و مدیران، و ساختار سازمانی مطرح بوده و ایجاد هماهنگی و یکپارچگی بین اجزا و افراد از اهمیت خاصی برخوردار است.




مرحله پنجم- نگهداری

جهت جاگیر شدن، تثبیت و ماندگاری سیستم در سازمان باید به یک سری موارد توجه داشت که عبارت است از مشاوره جهت رفع عیوب و نواقص، قرار دادن یک نمایندگی از طرف گروه طراح سیستم در دستگاه اجرایی، و تلاش برای جلوگیری از بازگشت دستگاه به سیستم قبلی_که معمولاً شش ماه مراقبت را لازم دارد_ و ... .





مرحله ششم- ارزشیابی سیستم

در این مرحله یک سیستم بازخورد مناسب برای اصلاح سیستم در نظر گرفته می‌شود. بطور معمول شش ماه پس از پیاده سازی سیستم صورت می‌گیرد و طی آن توصیه‌های اصلاحی ارائه می‌گردد.




سیستمهای کار- دانش

این سیستم¬ها به طور خاص برای کارکنان دانشی طراحی شده‌است تا بدین وسیله بتوانند به خلق دانش جدید بپردازند.




دانشگران

دانشگران افرادی هستند که دانش جدید ایجاد می‌کنند و به سازماندهی اطلاعات سازمانی می‌پردازند. معمولاً این افراد از آموزش سطوح بالا برخوردارند و در سازمانهای حرفه‌ای فعالیت می‌کنند.




وظایف دانشگران

۱)وظیفه به روز رسانی دانش سازمان که در ارتباط با محیط خارج است را به عهده دارند.

۲)این افراد به عنوان مشاورین داخل سازمان به ارائه خدمات می‌پردازند.

۳)در راستای تغییر، ایجاد خلاقیت و ارتقا در داخل سازمان فعالیت می‌کنند.
نیازمندیهای سیستم کار دانش

دسترسی سریع و آسان به پایگاه داده‌های خارج و داخل سازمان، برای دانشگران با استفاده از این سیستم میسر می‌کند تا اتلاف وقت کارکنانی که دستمزد بالایی را از سازمان دریافت می‌کنند، کاهش یابد.
مروری بر برخی سیستم‌های مدیریت دانش
9:55 pm
احتمالات
در زبان محاوره، احتمال یکی از چندین واژه‌ای است که برای دانسته یا پیشامدهای غیر مطمئن به کار می‌رود و کم و بیش با واژه‌هایی مانند ریسک، خطرناک، نامطمئن، مشکوک و بسته به متن قابل معاوضه‌است. شانس، بخت، امتیاز و شرط بندی از لغات دیگری است که نشان دهنده برداشت‌های مشابهی است. همانگونه که نظریه مکانیک به تعاریف دقیق ریاضی از عبارات متداولی مثل کار و نیرو می‌پردازد، نظریه احتمالات نیز تلاش دارد تا مفاهیم و برداشت‌های مربوط به احتمالات را کمّی سازی کند.






نرم‌افزارها

آمار مدرن برای انجام بعضی از محاسبات خیلی پیچیده و بزرگ به وسیله رایانهها استفاده می‌شود. کل شاخه‌های آمار با استفاده از محاسبات کامپیوتری انجام‌پذیر شده‌اند، برای مثال شبکه‌های عصبی. انقلاب کامپیوتری با یک توجه نو به آمار «آزمایشی» و «شناختیک» رویکردهایی برای آینده آمار داشته‌است.

یکی از مهم‌ترین کاربردهای آمار و احتمال با استفاده از رایانه شبیه سازی است.

شبیه سازی نسخه‌ای از بعضی وسایل حقیقی یا موقعیت‌های کاری است. شبیه سازی تلاش دارد تا بعضی جنبه‌های رفتاری یک سیستم فیزیکی یا انتزاعی را به وسیله رفتار سیستم دیگری نمایش دهد. شبیه سازی در بسیاری از متون شامل مدل سازی سیستم‌های طبیعی و سیتم‌های انسانی استفاده می‌شود. برای به دست آوردن بینش نسبت به کارکرد این سیستم‌ها در تکنولوژی و مهندسی ایمنی که هدف، آزمون بعضی سناریوهای عملی در دنیای واقعی است از شبیه سازی استفاده می‌شود. در شبیه سازی با استفاده از یک شبیه ساز یا وسیله دیگری در یک موقعیت ساختگی می‌توان آثار واقعی بعضی شرایط احتمالی را بازسازی کرد.

۱- شبیه سازی فیزیکی و متقابل (شبیه سازی فیزیکی، به شبیه سازی اطلاق می‌شود که در آن اشیای فیزیکی به جای شی واقعی جایگزین می‌شوند و این اجسام فیزیکی اغلب به این خاطر استفاده می‌شوند که کوچک‌تر و ارزان تر از شی یا سیستم حقیقی هستند. شبیه سازی متقابل (تعاملی) که شکل خاصی از شبیه سازی فیزیکی است و غالباً به انسان در شبیه سازی‌های حلقه‌ای اطلاق می‌شود یعنی شبیه سازی‌های فیزیکی که شامل انسان می‌شوند مثل مدل استفاده شده در شبیه ساز پرواز.)

۲- شبیه سازی در آموزش (شبیه سازی اغلب در آموزش پرسنل شهری و نظامی استفاده می‌شود. معمولاً هنگامی رخ می‌دهد که استفاده از تجهیزات در دنیای واقعی از لحاظ هزینه کمرشکن یا بسیار خطرناک است تا بتوان به کارآموزان اجازه استفاده از آن‌ها را داده. در چنین موقعیت‌هایی کارآموزان وقت خود را با آموزش دروس ارزشمند در یک محیط واقعی «ایمن» می‌گذرانند. غالباً این اطمینان وجود دارد تا اجازه خطا را به کارآموزان در طی آموزش داد تا ارزیابی سیستم ایمنی– بحران صورت گیرد.)

شبیه سازی‌های آموزشی به طور خاص در یکی از چهار گروه زیر قرار می‌گیرند:

الف - شبیه سازی زنده (جایی که افراد واقعی از تجهیزات شبیه سازی شده (یا آدمک) در دنیای واقعی استفاده می‌کنند.)

ب - شبیه سازی مجازی (جایی که افراد واقعی از تجهیزات شبیه سازی شده در دنیای شبیه سازی شده (یا محیط واقعی) استفاده می‌کنند.) یا

ج - شبیه سازی ساختاری (جایی که افراد شبیه سازی شده از تجهیزات شبیه سازی شده در یک محیط شبیه سازی شده استفاده می‌کنند. اغلب به عنوان بازی جنگی نامیده می‌شود زیرا که شباهتهایی با بازی‌های جنگی رومیزی دارد که در آن‌ها بازیکنان، سربازان و تجهیزات را اطراف یک میز هدایت می‌کنند.)

د - شبیه سازی ایفای نقش (جایی که افراد واقعی نقش یک کار واقعی را بازی می‌کنند.)

۳ - شبیه سازی‌های پزشکی (شبیه سازهای پزشکی به طور فزاینده‌ای در حال توسعه و کاربرد هستند تا روشهای درمانی و تشخیص و همچنین اصول پزشکی و تصمیم گیری به پرسنل بهداشتی آموزش داده شود. طیف شبیه سازها برای آموزش روش‌ها از پایه مثل خونگیری تا جراحی لاپاراسکوپی و مراقبت از بیمار دچار ضربه، وسیع و گسترده‌است. بسیاری از شبیه سازهای پزشکی دارای یک رایانه هستند که به یک ماکت پلاستیکی با آناتومی مشابه واقعی متصل است. در بعضی از آنها، ترسیم‌های کامپیوتری تمام اجزای قابل رؤیت را به دست می‌دهد و با دستکاری در دستگاه می‌توان جنبه‌های شبیه سازی شده کار را تولید کرد. بعضی از این دستگاهها دارای شبیه سازهای گرافیکی رایانهای برای تصویربرداری هستند مانند پرتو ایکس یا سایر تصاویر پزشکی. بعضی از شبیه سازهای بیمار، دارای یک مانکن انسان نما هستند که به داروهای تزریق شده واکنش می‌دهد و می‌توان آن را برای خلق صحنه‌های مشابه فوریت‌های پزشکی خطرناک برنامه ریزی کرد. بعضی از شبیه سازهای پزشکی از طریق شبکه اینترنت قابل گسترش هستند و با استفاده از جستجوگرهای استاندارد شبکه به تغییرات جواب می‌دهند. در حال حاضر، شبیه سازی‌ها به موارد غربال گری پایه محدود شده‌اند به نحوی که استفاده کنندگان از طریق وسایل امتیازدهی استاندارد با شبیه سازی در ارتباط هستند.)

۴ - شبیه سازهای پرواز (یک شبیه ساز پرواز برای آموزش خلبانان روی زمین مورد استفاده قرار می‌گیرد. به خلبان اجازه داده می‌شود تا به هواپیمای شبیه سازی شده اش آسیب برساند بدون آن که خود دچار آسیب شود. شبیه سازهای پرواز اغلب برای آموزش خلبانان استفاه می‌شوند تا هواپیما را در موقعیت‌های بسیار خطرناک مثل زمین نشستن بدون داشتن موتور یا نقص کامل الکتریکی یا هیدرولیکی هدایت کنند. پیشرفته‌ترین شبیه سازها دارای سیستم بصری با کیفیت بالا و سیستم حرکت هیدرولیک هستند. کار با شبیه ساز به طور معمول نسبت به هواپیمای واقعی ارزان تر است.)

۵ - شبیه سازی و بازیها (هم چنین بسیاری از بازی‌های ویدئویی شبیه ساز هستند که به طور ارزان تر آماده سازی شده‌اند. بعضی اوقات از این‌ها به عنوان بازیهای شبیه سازی (sim) نامبرده می‌شود. چنین بازیهایی جنبه‌های گوناگون واقعی را شبیه سازی می‌کنند از اقتصاد گرفته تا وسایل هوانوردی مثل شبیه سازهای پرواز.)

۶ - شبیه سازی مهندسی (شبیه سازی یک مشخصه مهم در سیستم‌های مهندسی است. برای مثال در مهندسی برق، از خطوط تأخیری استفاده می‌شود تا تأخیر تشدید شده و شیفت فاز ناشی از خط انتقال واقعی را شبیه سازی کنند. مشابهاً، از بارهای ظاهری می‌توان برای شبیه سازی مقاومت بدون شبیه سازی تشدید استفاده کرد و از این حالت در مواقعی استفاده می‌شود که تشدید ناخواسته باشد. یک شبیه ساز ممکن است تنها چند تا از کارکردهای واحد را شبیه سازی کند که در مقابل با عملی است که تقلید نامیده می‌شود. ۷ - اغلب شبیه سازی‌های مهندسی مستلزم مدل سازی ریاضی و بررسی‌های کامپیوتری هستند. به هر حال موارد زیادی وجود دارد که مدل سازی ریاضی قابل اعتماد نیست. شبیه سازی مشکلات مکانیک سیالات اغلب مستلزم شبیه سازی‌های ریاضی و فیزیکی است. در این موارد، مدل‌های فیزیکی نیاز به شبیه سازی دینامیک دارند.)

۸ - شبیه سازی کامپیوتری (شبیه سازی رایانه، جزو مفیدی برای بسیاری از سیستم‌های طبیعی در فیزیک، شیمی و زیست‌شناسی و نیز برای سیستم‌های انسانی در اقتصاد و علوم اجتماعی (جامعه‌شناسی کامپیوتری) و همچنین در مهندسی برای به دست آوردن بینش نسبت به عمل این سیستم‌ها شده‌است. یک نمونه خوب از سودمندی استفاده از رایانه‌ها در شبیه سازی را می‌توان در حیطه شبیه سازی ترافیک شبکه جستجو کرد. در چنین شبیه سازی‌هایی رفتار مدل هر شبیه سازی را مطابق با مجموعه پارامترهای اولیه منظور شده برای محیط تغییر خواهد داد. شبیه سازی‌های کامپیوتری] اغلب به این منظور به کار گرفته می‌شوند تا انسان از شبیه سازی‌های حلقه‌ای در امان باشد. به طور سنتی، مدل برداری رسمی سیستم‌ها از طریق یک مدل ریاضی بوده‌است به نحوی که تلاش در جهت یافتن راه حل تحلیلی برای مشکلات بوده‌است که پیش بینی رفتار سیستم را با استفاده از یک سری پارامترها و شرایط اولیه ممکن ساخته‌است. شبیه سازی کامپیوتری اغلب به عنوان یک ضمیمه یا جانشین برای سیستم‌های مدل سازی است که در آن‌ها راه حل‌های تحلیلی بسته ساده ممکن نیست. انواع مختلفی از شبیه سازی کامپیوتری وجود دارد که وجه مشترک همه آن‌ها در این است که تلاش می‌کند تا یک نمونه از برنامه‌ای برای یک مدل تولید کنند که در آن امکان محاسبه کامل تمام حالات ممکن مدل مشکل یا غیر ممکن است.)

به طور رو به افزونی معمول شده‌است که نام انواع مختلفی از شبیه سازی شنیده می‌شود که به عنوان «محیط‌های صناعی» اطلاق می‌شوند. این عنوان اتخاذ شده‌است تا تعریف شبیه سازی عملاً به تمام دستاوردهای حاصل از رایانه تعمیم داده شود.

۹ - شبیه سازی در علم رایانه (در برنامه نویسی کامپیوتری، یک شبیه ساز اغلب برای اجرای برنامه‌ای مورد استفاده قرار می‌گیرد که انجام آن برای رایانه با مقداری دشواری همراه است. برای مثال، شبیه سازها معمولاً برای رفع عیب یک ریزبرنامه استفاده می‌شوند. از آن جایی که کار کامپیوتر شبیه سازی شده‌است، تمام اطلاعات در مورد کار رایانه مستقیماً در دسترس برنامه دهنده‌است و سرعت و اجرای شبیه سازی را می‌توان تغییر داد. همچنین شبیه سازها برای تفسیر درخت‌های عیب یا تست کردن طراحی‌های منطقی VLSI قبل از ساخت مورد استفاده قرار می‌گیرند. در علم رایانه نظریه، عبارت شبیه سازی نشان دهنده یک رابطه بین سیستم‌های انتقال وضعیت است که این در مطالعه مفاهیم اجرایی سودمند است.)

۱۰ - شبیه سازی در تعلیم و تربیت (شبیه سازی‌ها در تعلیم و تربیت گاهی مثل شبیه سازی‌های آموزشی هستند. آن‌ها روی وظایف خاص متمرکز می‌شوند. در گذشته از ویدئو برای معلمین و دانش آموزان استفاده می‌شود تا مشاهده کنند، مسائل را حل کنند و نقش بازی کنند؛ هرچند، یک استفاده جدید تر از شبیه سازی‌ها در تعلیم و تربیت شامل فیلم‌های انیمیشن است (ANV.(ANVها نوعی فیلم ویدئویی کارتون مانند با داستان‌های تخیلی یا واقعی هستند که برای آموزش و یادگیری کلاس استفاده می‌شوند.ANVها برای ارزیابی آگاهی، مهارت‌های حل مسئله و نظم بچه‌ها و معلمین قبل و حین اشتغال کارایی دارند.)

شکل دیگری از شبیه سازی در سال‌های اخیر با اقبال در آموزش بازرگانی مواجه شده‌است. شبیه سازی بازرگانی که دارای یک مدل پویا است که آزمون استراتژی‌های بازرگانی را در محیط فاقد خطر مهیا می‌سازد و محیط مساعدی برای مباحث مطالعه موارد ارائه می‌دهد.

واژگانی که درک مفهوم آن‌ها در علم آمار مهم است عبارت‌اند از∗:

جمعیت
نمونه
متغیّر
مقیاس‌های اندازه‌گیری:
مقیاس اسمی (به انگلیسی: Nominal Scale)
مقیاس ترتیبی (به انگلیسی: Ordinal Scale)
مقیاس فاصله‌ای (به انگلیسی: Interval Scales)
مقیاس نسبی (به انگلیسی: Ratio Scales)

آمار رشته وسیعی از ریاضی است که راههای جمع آوری، خلاصه سازی و نتیجه گیری از دادهها را مطالعه می‌کند. این علم برای طیف وسیعی از علوم دانشگاهی از فیزیک و علوم اجتماعی گرفته تا انسان‌شناسی و همچنین تجارت، حکومت داری و صنعت کاربرد دارد.

هنگامی که دادهها جمع آوری شدند چه از طریق یک روش نمونه برداری خاص یا به وسیله ثبت پاسخ‌ها در قبال رفتارها در یک مجموعه آزمایشی (طرح آزمایش) یا به وسیله مشاهده مکرر یک فرایند در طی زمان (سری‌های زمانی) خلاصه‌های گرافیکی یا عددی را می‌توان با استفاده از آمار توصیفی به دست آورد.

الگوهای موجه در داده‌ها سازمان بندی می‌شوند تا نتیجه گیری در مورد جمعیت‌های بزرگ‌تر به دست آید که این کار با استفاده از آمار استنباطی صورت می‌گیرد و تصادفی بودن و عدم قاطعیت در مشاهدات را شناسایی می‌کند. این استنباط‌ها ممکن است به شکل جوابهای بله یا خیر به سؤالات باشد (آزمون فرض)، خصوصیات عددی را برآورد کند (تخمین)، پیش گویی مشاهدات آتی باشد، توصیف ارتباط‌ها باشد (همبستگی) و یا مدل سازی روابط باشد (رگرسیون).

شبکه توصیف شده در بالا گاهی اوقات به عنوان آمار کاربردی اطلاق می‌شود. در مقابل، آمار ریاضی (یا ساده تر نظریه آماری) زیر رشته‌ای از ریاضی کاربردی است که از نظریه احتمال و آنالیز برای به کارگیری آمار برروی یک پایه نظریه محکم استفاده می‌کند.

مراحل پایه برای انجام یک تجربه عبارت‌اند از:

برنامه ریزی تحقیق شامل تعیین منابع اطلاعاتی، انتخاب موضوع تحقیق و ملاحظات اخلاقی برای تحقیق و روش پیشنهادی. طراحی آزمون شامل تمرکز روی مدل سیستم و تقابل متغیرهای مستقل و وابسته. خلاصه سازی از نتایج مشاهدات برای جامعیت بخشیدن به آنها با حذف نتایج (آمار توصیفی). رسیدن به اجماع در مورد آنچه مشاهدات درباره دنیایی که مشاهده می‌کنیم به ما می‌گویند (استنباط آماری). ثبت و ارائه نتایج مطالعه.




سطوح اندازه گیری
چهار نوع اندازه گیری یا مقیاس اندازه گیری در آمار استفاده می‌شود. چهار نوع یا سطح اندازه گیری (ترتیبی، اسمی، بازه‌ای و نسبی) دارای درجات متفاوتی از سودمندی در بررسی‌های آماری دارند. اندازه گیری نسبی در حالی که هم یک مقدار صفر و فاصله بین اندازه‌های متفاوت تعریف می‌شود بیشترین انعطاف پذیری را در بین روش‌های آماری دارد که می‌تواند برای تحلیل داده‌ها استفاده شود. مقیاس تناوبی با داشتن فواصل معنی دار بین اندازه‌ها اما بدون داشتن میزان صفر معنی دار (مثل اندازه‌گیری بهره هوشی یا اندازه‌گیری دما در مقیاس سلسیوس) در تحقیقات آماری استفاده می‌شود. صفت آماری - هر ویژگی مربوط به هر واحد جامعه را یک صفت آماری یا به اختصار یک صفت برای آن واحد آماری است. اگر یک واحد آماری یک انسان باشد، گروه خون، وزن، میزان سواد، میزان درآمد، درجه حرارت بدن و تعدادخانوار هر کدام یک صفت آماری برای آن واحد است. صفتهای آماری دو دسته کلی هستند. ۱- صفت مشخصه ۲ صفت متغیر
ساعت : 9:55 pm | نویسنده : admin | مطلب قبلی | مطلب بعدی
آنالیز غیر خطی | next page | next page